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An analytical solution is developed to describe the unsteady-state heat transfer 
to a cylindrical cavity with circulating flow induced by a moving wall. The 
previously derived velocity field at low Reynolds numbers is incorporated into 
the energy equation, and the case of heat transfer to a fluid segmented by highly 
conducting plugs flowing in a tube with constant wall temperature is considered. 
Calculations of temperature distributions, average temperatures, and heat 
transfer coefficients as functions of time and P6clet number are presented for a 
specific cavity geometry, and the degree of enhancement in heat transfer caused 
by the recirculating flow is determined. 

The methods developed in this study may be useful in obtaining analytical 
solutions to a variety of closed-streamline heat and mass transfer problems with 
known velocity fields. 

Introduction 
The characterization of heat or mass transfer in closed-streamline flow fields 

has been the object of numerous experimental and theoretical investigations. 
For example, Burggraf (1966) has numerically computed solutions for heat 
transfer in a square cavity in which flow is generated by the movement of one of 
the cavity walls. These finite-difference solutions were obtained for two cases 
under steady-state conditions for a Prandtl number of one and Reynolds numbers 
ranging from 0 to 400. In  one case, Burggraf considered the heat transfer from a 
hot moving wall to cooler stationary walls, and in a second case the fixed walls 
were considered adiabatic and the heat generated by viscous dissipation was 
removed through the moving wall. The related problem of steady-state mass 
transport from the walls of a rectangular cavity to a fluid flowing over the cavity 
has been experimentally investigated by Jarrett & Sweeney (1967) who measured 
mass transfer rates from various locations on the walls using an evaporative 
surface technique. 

Natural convection phenomena in rectangular cavities are good examples of 
heat transfer in closed-streamline flow fields involving intimate coupling 
between the equations of motion and the energy equation. An analytical solu- 
tion describing steady -state heat transfer by laminar free convection in enclosed 
plane gas layers for moderately low Rayleigh numbers has been derived by Poots 
(1958). Gill (1966) has developed an approximate steady-state solution to the 
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free convection problem in a rectangular cavity which is valid for the large Ray- 
leigh number limit where the boundary-layer equations can be utilized. Wilkes 
& Churchill (1966) generated finite-difference solutions of the complete set of 
equations describing the transient and steady-state natural convection in a 
rectangular enclosure. 

The theory of solute extraction from falling droplets in viscous systems is of 
considerable practical interest. Especially important is the determination of the 
enhancement of the extraction rate caused by circulation currents which are set 
up by the viscous forces between the continuous and dispersed phases. Kronig 
& Brink (1950) utilized Hadamard’s (1911) creeping-flow velocity field in the 
diffusion equation and obtained an analytical solution valid for very high 
PBclet numbers. For this infinite PBclet number limit, the lines of constant 
concentration are identical with the streamlines of the flow field. Johns & Beck- 
mann (1966) extended this work by obtaining finite-difference solutions to the 
diffusion equation for this closed-streamline flow field for P6clet numbers be- 
tween the stagnant-drop limit and the high circulation current limit. Finally, 
another example of the characterization of the heat transfer behaviour of a 
closed-streamline flow is the analytical solution derived by Ho, Nardacci & Nissan 
(1964) for a Taylor vortex system. The solution derived by these authors is valid 
for a small range of Taylor numbers above the critical and for a Prandtl number 
close to unity. 

In this paper we study the heat transfer behaviour of a bolus flow velocity 
field of the type considered in Duda & Vrentas (1970, hereafter referred to as I) 
where plugs or bubbles separate elements of fluid and set up circulation patterns. 
The elucidation of the heat transfer mechanism for this flow is of interest because 
of the relatively important nature of this flow field. In  addition, the techniques 
developed here may be useful in obtaining analytical solutions to a variety of 
closed-streamline heat or mass transfer problems with known velocity fields. 
In I, expressions were derived for the velocity fields of the two limiting cases of 
bolus flow, solid plugs with a no-slip boundary condition and gas bubbles with a 
no-drag boundary condition. Although investigation of the heat transfer charac- 
teristics is effectively equivalent for the two cases, we shall concentrate solely on 
the former and thus determine the temperature field in a cylindrical cavity with 
solid plane surfaces and a uniformly translating curved surface. This case appears 
to be a good approximation to the flow of blood in capillaries and also is closely 
related to the important problem of heat transfer in rectangular cavities. Several 
investigators (Prothero & Burton 1961; Oliver & Wright 1964; Oliver & Young 
Hoon 1968) have experimentally studied heat transfer t o  the bolus flow field 
produced by slugs of gas moving down a pipe. This case is probably best approxi- 
mated by an adiabatic slug wall with a no drag boundary condition for the equa- 
tions of motion. However, a theoretical treatment of the type used here is most 
likely somewhat inadequate since gas bubbles tend to deform, are displaced to- 
wards the top of the tube, and do not completely isolate the segments of liquid. 

The analytical solution for the velocity field for the cylindrical cavity with 
solid walls is incorporated into the energy equation, and an analytical solution 
which describes unsteady-state heat transfer to the fluid in the cavity is developed. 
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Due to the limitation on the analytical expression for the stream function, the 
heat transfer analysis is valid only for low Reynolds number flows. In  addition, 
the physical properties of the fluid are considered independent of temperature 
so that the energy equation and the equations of motion are not coupled. In  the 
specific case considered in this study, heat is transferred between constant tem- 
perature cavity walls and a fluid which initially is at  a uniform but different 
temperature. For bolus flow in a tube, this condition corresponds to the situation 
where the plugs which isolate the segments of fluid are at the same temperature 
as the tube wall; such a boundary condition would be appropriate for highly con- 
ducting solid plugs. The boundary condition on aplug surface will of course depend 
on the nature of the plugs which induce the recirculating flow. Although only one 
set of boundary conditions is treated below, the mathematical techniques 
presented are not limited to this specific case, and, with some modifications, 
a wide variety of boundary conditions could be examined. 

The analytical solution developed here is used to determine average and in- 
stantaneous heat transfer coefficients as functions of time and PBclet number 
for a specific cavity geometry. Comparison of these results with the case of pure 
conduction indicates the enhancement in heat transfer due to the induced closed- 
streamline flow. 

Solution of energy equation 
We consider the laminar flow heat transfer to a Newtonian fluid in a cylindrical 

cavity with a uniformly translating wall. In  the absence of gravitational effects 
the temperature and velocity fields can be assumed to be symmetrical Further- 
more, the fluid motion in the cavity is assumed to be established before heating or 
cooling of the fluid begins. Since the properties of the fluid are considered inde- 
pendent of temperature, the steady velocity field calculated in I can be used and 
the energy equation is effectively linearized. Finally, viscous dissipation effects 
are considered negligible. For these conditions, the temperature field in the cavity 
is described by the following set of dimensionless equations : 

where T is temperature, t time, r and z the radial and axial distances respectively, 
U and V the axial and radial velocities. P, is the PBclet number where k is ther- 
mal conductivity, R the radius of the cavity, p density, Ua the velocity of the 
cavity wall, velocity of plugs in a pipe, and 6?, the specific heat capacity at  con- 
stant specific volume. 
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The dimensionless distance and velocity variables are as in I and the dimen- 
sionless time and temperature variables are given by the equations 

wherc To is the initial temperature of the fluid and T, is temperature of the cavity 
walls. 

Since the components of the velocity vector for this flow field are functions 
of position in the cavity, it is clear that we are confronted with the problem of 
solving a particularly difficult parabolic partial differential equation with 
variable coefficients. Problems involving the simultaneous conduction and con- 
vection of heat as described by equations of the form of (1) have generally defied 
analytical solution except for certain special types of velocity fields such as plug 
and parabolic velocity profiles in a pipe (McAdams 1954). In  addition, Ames & 
de la Cuesta (1963) and de la Cuesta & Ames (1963) have devised a method of 
solving this type of equation when the velocity vector can be expressed as the 
gradient of certain time-independent potentials. In this case, the encrgj- equation 
is transformed into an equation of the Xchroedinger type which is easier to solve. 
However, with a general velocity field, it is not always possible to obtain a sepa- 
rable solution to the convective heat equation; indeed, it was found that the pre- 
sent problem could not be solved by a standard separation of variables approach. 

Analytical solutions to partial differential equations with variable coefficients 
can often be obtained by a formal Fourier series technique which leads to infinite 
systems of algebraic equations for the eigenvalues and for the coefficients of the 
eigenfunction expansion. As in I, a solution will be considered analytical if it can 
be represented by a convergent series whose terms are explicit functions of the 
independent variables. The Fourier series method was first used in the theory 
of the moon's motion by G. W. Hill in solving the ordinary differential equation 
which has become known as Hill's equation (Whittaker & Watson 1927; Jeffrey8 
& Jeffreys 1956). Dennis & Poots (1956), Singh (1958), and Dennis, Mercer & 
Poots (1959) have since utilized the method with success in solving the partial 
differential equations describing various aspects of forced convection heat trans- 
fer for parallel plates, pipes, and rectangular ducts. In  this study, we apply such 
a formal Fourier series method to the equations describing heat transfer to a 
cylindrical cavity and formulate the equations and methods for obtaining a 
sufficient number of the eigenvalues and eigenfunction coefficients to permit 
accurate results to be calculated. 

We proceed by assuming a solution to (1)-(6) of the form 

m = l  n = l  

where the #m are the zeros of Jo($m) = 0. (11) 

The conditions on the boundaries of the cylindrical domain are satisfied 
identically by (10) and so is the initial condition if we require that 
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Consequently, it remains to choose the eigenvalues and coefficients of the eigen- 
function expansion so that (10) satisfies the convective heat equation, (1). 
Substitution of (10) into (1) and utilization of double series expansions for the 
convective terms in the energyequation lead to a doubly infinite set of equations 
for the pmn(t): 

(13) 

The doubly infinite system of linear, first-order differential equations repre- 
sented by (1  3) is satisfied by solutions of the form 

Fmn = L,, exp [ - A ~ ~ / P , I  (15) 

if 

for all mn. Equation (16) represents a, doubly infinite set of linear, algebraic, 
homogeneous equations for the Lmn. The eigenvalues, h2, are determined from 
the condition for non-vanishing Lmn, namely that the determinant of the co- 
efficients in the system of equations represented by (16) must vanish. The doubly 
infinite set of eigenvalues can, in principle, then be obtained from the algebraic 
equation resulting from setting this determinant equal to zero. Rather than deal 
with infinite determinants, we utilize the infinite system, (16), directly to evalu- 
ate the pqth eigenvalue, A&, and its associated eigenvector, Urn$, . Consequently, 
if the eigenvector is normalized using 

then each eigenvalue and its normalized eigenvector can be determined directly 
from the following doubly infinite system of equations: 

If it is assumed that the eigenvalues are distinct, then the solution of (13) 

m m  
takes the form 

= zl x J43g~%exPr-~;,t/P,I, (20) 

where we have set Lg; = Xp,. (21) 

p=l q = 1  
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In  addition, the initial condition for the pi,,, (12), is satisfied if the M,, are cal- 
culated from the following doubly infinite set of equations: 

Finally, it follows from (10) and (20) that the solution to (1)-(6) can be expressed 
as 

Calculation of eigenvalues, eigenvectors, and eigenfunction coefficients 
In  this section, the formalism for the calculation of the eigenvalues, hiq, the 

associated eigenvectors, Kg:, and the eigenfunction coefficients, NPq, is presented. 
To facilitate this development we first briefly sketch the method used for calcu- 
lating the four-suffix coefficients, &,,, and, in addition, discuss the eigenvalue 
problem for vector spaces with an infinite number of dimensions. 

Calculation of qamn 
Introduction of the definition of the stream function into (14) and appropriate 
integration by parts yield the following expression for the Garnn: 

The spatial dependence of the stream function was determined in I and for the 
present purpose it is convenient to utilize these previous results to formulate a 
double series representation for @. Substitution of this double series form into 
(24) reduces the problem of calculating the Gamn to evaluating a trigonometric 
integral and an integral involving Bessel functions. The first integral can be 
evaluated exactly whereas the second must be calculated by integration of an 
infinite series. Details of these steps are straightforward and are omitted. An 
aid to the computation is the fact that the %,,, exhibit the following symmetry 
property: 

Eigenvalue problem for a n  inJinite-dimensional vector space 

Determination of the h2 from (16) is, on the surface a t  least, just the classical 
eigenvalue problem, and ( 16) can be re-expressed as 
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where I is an infinite unit matrix, L is the appropriate infinite column vector, 
and A is the infinite square matrix whose non-diagonal elements are the &,,, 
and whose diagonal elements are given by 

It is clear from (25) that A is not symmetric so, assuming that infinite matrices 
behave like finite matrices, it is not possible to deduce if the eigenvalues of A 
are real. 

It does not always follow that the eigenvalue problem for infinite matrices 
is completely analogous to that for matrices of finite size. For example, there 
exist relatively simple inh i t e  matrices that have no eigenvalues at  all. Conse- 
quently, the eigenvalue problem must be reformulated if linear vector spaoes 
with an infinite number of dimensions are to be included in the general formalism. 
Cooke (1953) discusses von Neumann’s analysis of this problem which is of great 
importance in the solution of many problems of quantum physics. If the eigen- 
value spectrum of an infinite matrix is such that any given vector can be repre- 
sented arbitrarily closely by a linear combination of basis vectors which form a 
countable or denumerable set, then the eigenvalue problem is essentially equiva- 
lent to that for a space of finite dimensions. Differences exist simply because 
infinite rather than finite matrices are involved and because attention must be 
given to the mathematical questions of convergence for the infinite operations 
required. In  some instances, however, the eigenvector basis is non-denumerable, 
consisting of a continuum of vectors; for this case, changes must be made in the 
eigenvalue problem. It is not probable that such difficulties will occur in the pre- 
sent case, and we proceed on the assumption that the eigenvalue problem for the 
infinite matrix A is essentially no different than that for a finite matrix. 

Conjugate gradient method for the eigenvalues 

Determination of the eigenvalues and eigenvectors of the infinite matrix A 
was accomplished by directly solving the doubly infinite set of equations given 
by (18) and (19) rather than by utilizing the more standard techniques usually 
applied to matrices of finite size. The method of reduction (Kantorovich & 
Krylov 1958) was used to solve the non-linear infinite system, and progressively 
larger finite systems were employed in order to  asymptotically approach the 
solution to the infinite system. Perhaps the most efficient way to obtain solutions 
of the finite systems is by application of a successive approximation method. 
However, iterative methods are not convergent in this case since the non- 
diagonal or convective terms of the infinite A matrix are not small relative to the 
diagonal or conductive entries, except at small PBclet numbers where heat con- 
duction is the prime mode of transport. 

Consequently, it is convenient to apply a conjugate gradient method of the 
type outlined by Goldfarb & Lapidus (1968) to solve the non-linear system of 
equations. By combining (1 8) and (19) it is possible to put the non-linear set into 
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m m  

The problem of finding a solution of the system represented by (28) can then be 
reduced to the problem of determining the values of Kg$ for which the function 

assumes a minimum value (equal to zero). Once the K&$, the components of the 
normalized eigenvector, are calculated using the conjugate gradient approach, 
the associated eigenvalue, A:*, is determined directly from (18). The quadratic 
convergence property ofthe conjugate gradient method was essential in obtaining 
converged eigenvectors in a reasonable amount of computer time since appli- 
cation of the well-known steepest descent technique to this problem led t o  ex- 
tremely slow rates of convergence. 

Since it is of course not possible to obtain all of the eigenvalues of the matrix, 
we are interested in determining only the fist few smallest ones since these will 
suffice for most heat transfer calculations. By the method proposed above, it is 
possible by poor choice of the starting vector to obtain the eigenvector for one of 
the larger eigenvalues. This difficulty is avoided in the following manner. As is 
shown below, all the eigenvalues and associated eigenvectors are known for 
P, = 0. Hence, it is possible to start the calculation using the eigenvector at 
P, = 0 and calculate this vector as a function of PBclet number by gradually 
increasing the PBclet number. Thus, a good estimate of the starting vector is 
always available, and it is possible to calculate the local minimum appropriate to 
the eigenvalue of interest without much difficulty. 

Variational method for calculation of the M,, 
The M,,,, the coefficients of the eigenfunction expansion, can be determined by 
directly solving the doubly infinite set of equations represented by ( 2 2 )  by using 
the method of reduction in conjunction with the conjugate gradient technique. 
However, more accurate results can be obtained with equivalent finite system 
approximations to the infinite system if a variational method is applied in the 
manner suggested by Dennis & Poots (1956) and by Singh (1958). The result of 
this minimization can ultimately be expressed as 

The solution of the doubly infinite linear system represented by (30) can be 
derived by utilization of the method of reduction and the conjugate gradient 
technique. 
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Heat transfer coefficients 
The heat transfer capabilities of the recirculating flow field in the cylindrical 

cavity are perhaps better assessed by examination of average temperatures and 
heat transfer coefficients rather than spatial temperature distributions. Conse- 
quently, in this section we derive the necessary formulas for the calculation 
of the time variations of the average temperature in the cavity, the instantaneous 
heat transfer coefficient, and the average heat transfer coefficient, Utilization of 
(23) and integration over the volume of the cavity produce the expression for the 
time dependence of the average temperature, 

%qmn = MpqK% Jl(4m) ( - ')"I. (32) 

(33) 

An instantaneous heat transfer coefficient, hi, can be defined by the equation 

qi = 2hii?rR(L + R) (T! - Tz), 
where qi is the instantaneous heat flow into the cavity and Tz is the dimensional 
average temperature. Hence, from (23), (31), and (33) it can be shown that the 
instantaneous Nusselt number is given by the following result: 

Similarly, an average heat transfer coefficient, ha, can be defined by the equa- 

Q/t* = 2h,nR(R + L )  t[(  T, - To) + (T, - TE)], (35) 
tion 

where t* is the dimensional time and Q is the total heat added to the fluid in the 
cavity from t* = 0 to t* = t*. It can be shown that (35) yields the following ex- 
pression for the average Nusselt number: 

h,R/k = P,pT,/(1 +p)  t(2 - T,). (36) 

It is of interest to see how the results of this study simplify for the case where 
the wall of the cavity is not translating so that the fluid is quiescent and heat is 
transferred solely by conduction. For this situation, it is clear that 

$ = 0, Ybamn = 0. (37) 

h;q = @I + (P//V> (38) 

Hence, it follows from (18) and (19) that 

Kg%= 0, m n + p q  
and, thus, (22) simplifies to 

(39) 
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Finally, (23) can be reduced to 
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T(z, r ,  t )  = 1 + C w m  C Mmn sin (nnz/P)J0 ($mr)  exp [ - 4k+ (nrip)',],  (41) 
m = l n = l  P,  

which is of course the equation that has been derived for heat conduction in a 
cylinder by a standard separation of variables approach (Carslaw & Jaeger 
1959). It can also be easily shown that, for a quiescent cavity, (31) and (34) take 
the following forms : 

A cavity with stagnant fluid is representative of the idealized case where a train 
of plugs moves down a pipe segmented by fluid which is in plug flow. 

If we now go back to the equations valid for a, cavity with a recirculating flow 
field, it is clear that these equations also yield (38)-(43) in the limit as P, -+ 0. 
This is of course to be expected since, as the Pgclet number becomes very small, 
the heat transfer by convection becomes insignificant when compared to heat 
transfer by conduction. Hence, for very low PBclet numbers the heat transport 
characteristics of a cavity with a recirculating fluid become effectively indis- 
tinguishable from those of a cavity with a stagnant fluid. 

Finally, the long-time asymptote of the instantaneous Nusselt number for the 
recirculating flow field is given by 

whereas for a stagnant flow field (or for a recirculating flow field at  low PBclet 
numbers) this quantity takes the following form 

It should also be noted that the average Nusselt number in a cavity at  any given 
time can never exceed the value given by the expression : 
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Results and discussion 
Detailed calculations were carried out for a cylindrical cavity with an aspect 

ratio of p = 1 for PBclet numbers ranging from 0 to 200. In principle, it is possible 
to determine the heat transfer characteristics of a cavity for any PBclet number 
and for any aspect ratio from the above equations. In  practice, however, although 
there is no difficulty in covering a wide range of PBclet numbers, the computations 
become somewhat cumbersome for large values of ,8. This difficulty results be- 
cause the eigenvalues lie closer together as ,8 is increased. Although results could 
be obtained without excessive difficulty for aspect ratios as high as p = 5, in this 
study we concentrate on conducting a thorough investigation of the heat trans- 
fer behaviour for a single cavity geometry. In  addition, no calculations were 
made for PBclet numbers higher than 200 since the transition from the effectively 
stagnant flow r6gime to the large circulation current rkgime is essentially complete 
a t  this value of P6clet number. 

I I I I 1 I I I 
.- 

0 20 40 60 SO 100 120 140 160 180 200 

p, 
FIGURE 1. Dependence of Ail on PBclet number. 

Eigenvectors and the associated eigenvalues were computed for /3 = 1 by 
using the conjugate gradient method to solve 35 or 99 non-linear equations of 
the type represented by (28). Increase of the size of the finite system approxima- 
tion to the infinite system yielded insignificant changes for the fbst 25 com- 
ponents (for Kg:, rn = 1 to 5, n = 1 to 5) of the eigenvectors for a t  least the four 
smallest eigenvalues. The f i s t  36 components of the eigenvector for the smallest 
eigenvalue, A:*, are shown in table 1 for five values of the PBclet number. In  
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m 

1 
1 
1 
1 
1 
1 

2 
2 
2 
2 
2 
2 

3 
3 
3 
3 
3 
3 

4 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 

6 
6 
6 
6 
6 
6 

n 
1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

10 

1.000 
- 2.156 x 10-1 

2.789 x 
1.879 x 

- 8.896 x 
1.222 x 10-3 

- 3.839 x 
7.643 x 

- 1.220 x 10-2 
6.316 x 

- 1.103 x 
-2.110 x 10-4 

3.408 x 
- 3-316 x 
- 6,621 x 
- 6.876 x lov3 

1.764 x 
- 1.081 x 

- 1.135 x lo-' 
- 4.373 x 10-3 

1.539 x 
3.711 x 

- 1.161 x 
1.257 x 

3.152 x 
4.250 x 

- 9.924 x 
- 1.614 x lo-' 

5.648 x 
- 9.820 x 

- 7.243 x 
- 3.098 x 

7.402 x 
5.052 x 

- 2.389 x 
6.450 x 

PBclet number 
25 45 7 5  100 

1.000 1.000 1.000 1.000 

1.391 x 10-1 2-300 x 10-1 1.924 x 10-1 1.338 x 10-1 

1.672 x 2.350 x 4-404 x 4.269 x 
3.283 x - 4.342 x lop4 - 1.456 x - 2.306 x lop2 

- 4.657 x 10-1 - 5.464 x 10-l - 4.514 x 10-l - 3.723 x 10-1 

- 2.549 x lo-' - 8.720 x lo-' - 1.161 x 10-l - 1.116 x lo-' 

- 2.321 x 10-l - 5.863 x 10-1 - 9.573 x 10-l - 1.167 
1.987 x 10-1 3.203 x 10-l 3.532 x 10-1 3.362 x 10-1 

- 5.947 x -9.194 x - 5-363 x - 9.061 x lop3 
3.088 x 7.295 x 1.007 x 10-1 1.069 x 10-1 

- 9.896 x - 2.978 x - 3.666 x - 2.760 x lo-' 
2.084 x 1.277 x lo-' 2.750 x 3.366 x 

1.998 x 10-1 4.889 x 10-l 7.786 x lo-' 9.327 x lo-' 

5.269 x lop3 3.133 x lo-' 3-806 x 2.555 x lop2 

8-851 x 1-681 x 1.716 x 1.066 x loV2 

- 6.790 x - 2.070 x lo-' - 2.756 x 10-1 - 2.684 x lo-' 

- 1.745 x lo-' - 4.180 x lo-' - 8.007 x - 9.874 x lo-' 

- 5-400 x - 1.345 x - 2.015 x - 2.428 x 

- 8.288 x lo-' -2.598 x 10-1 - 4.701 x lo-' - 5776 x 10-l 
2.498 x lop2 1.132 x 10-1 1-750 x lo-' 1-784 x lo-' 
4.014 x - 2.426 x lop2 - 5.568 x - 0.866 x 
1.036 x 3-209 x 7.056 x 9.177 x lop2 

-5.681 x - 1.142 x lo-' - 1.215 x - 6-921 x 
4.743 x 1.017 x 1.574 x lo-? 2.033 x lo-' 
3.243 x 1.303 x 10-l 2.591 x 10-l 3.159 x 10-1 

- 3.158 x - 4-844 x lop2 - 9.798 x - 1.031 x lo-' 
- 1.290 x 1.727 x 5.617 x lop2 7.510 x 
- 6.489 x - 2-452 x - 5-729 x - 7.200 x lo-' 

3.472 x 9.510 x 1.369 x 9.993 x lop3 
- 3.482 x - 8.349 x - 1.685 x - 2.432 x 

- 1.145 x - 6.108 x - 1.490 x 10-l - 1.978 x 10-1 
- 3.905 x lop3 2.001 x lo-' 8.184 x 1.225 x lo-' 

2.179 x - 1.204 x lou2 - 6.931 x - 1.207 x 10-1 
3.090 x 1.646 x lo-' 5.499 x 8.890 x 

- 2.055 x - 7.975 x - 2.123 x - 3.546 x 
2.413 x 6.753 x 1.642 x 2.874 x lo-' 

TABT~E 1. Calculated values of Kga 

PBclet number 
10 25 45 75 100 

Z l  17-2086 24-1244 33.9737 41-7634 45.1052 
G 2  44.0564 52.2865 76.7916 100-0058 105.4450 
%l 43.8928 48-9918 62.5298 88.9028 93.7213 

MI1 -2.0561 - 2.0124 - 1.7916 - 1.6092 - 1.5452 
MlZ 0.6920 -0.1769 0.0194 -0.5122 - 1.3784 
MZl 1.9794 0.6513 0-3523 - 0.4594 - 1.5719 

TABLE 2. Calculated eigenvalues and eigenfunction coefficients 
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addition, the three smallest eigenvalues and the appropriate coefficients of the 
eigenfunction expansion are presented in table 2 for the same five PBclet numbers. 
These three eigenvalues and the associated eigenvectors and eigenfunction 
coefficients are sufficient for accurate heat transfer calculations for all but the 
smallest times. The dependence of Xil on PBclet number is portrayed in figure 1 
and it is evident that this eigenvalue is very close to its infinite PBclet number 
asymptote at  P, = 200. 

1 .o 

0.8 

0.6 

r 

0.4 

0.2 

T=0.90 

1 .o 

0.8 

0.6 

T 

0.4 

0.2 

0 
0 0 2  0.4 0.6 0.5 1 .a 

2 

FIGURE 3. Isotherms for induced flow heat transfer, P, = 25, t/P, = 0.02. 
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The temperature field in a cavity with no fluid circulation or with circulation 
in the limit of low PBclet numbers is symmetrical with the minimum tempera- 
ture occurring a t  z = 0.5 and r = 0. The isotherms for this case for tipe = 0.02 
are shown in figure 2 .  As the PBclet number increases and the convective terms 
in the energy equation become important, the symmetry of the temperature field 
is destroyed and the position of the temperature minimum moves away from the 
centreline. This phenomenon is evident in figure 3 where isotherms are presented 
for P, = 25 and t/Pe = 0.02. The temperature minimum is forced from left to right 
and away from the centreline because the counterclockwise flow carries fluid 
which has passed by the solid walls of the cavity which are of course a t  the maxi- 
mum possible temperature. 

2 

FIGURE 4. Effect of PBclet number on location of asymptotic minimum 
temperature. 

In the classical Graetz problem for forced convection in a tube, it is well known 
that the local Nusselt number approaches an asymptote and that the temperature 
profile does not change shape as soon as the temperature boundary layers meet a t  
the tube axis (Eckert & Drake 1959). An asymptotic instantaneous Nusselt 
number and an asymptotic temperature profile are also observed for the cylin- 
drical cavity. The position of the minimum temperature for these asymptotic 
temperature distributions is depicted in figure 4 as a function of the PBclet 
number. The location of the temperature extremum progresses from the low 
PBclet number or conduction limit a t  x = 0.5, r = 0 to the infinite PBclet number 
or large circulation current limit at z = 0.5, r = 0.794. At very high PBclet 
numbers, the isotherms of the temperature field are identical to the streamlines 
of the velocity field for all but the earliest times. Hence, the vortex centre and 
the temperature minimum necessarily coincide for this limiting case. The locus 
of the minima for intermediate PBclet numbers is similar to  that observed by 
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Johns & Beckmann (1966) for the concentration maxima in the circulating drop 
problem. These authors presented a sequence of asymptotic concentration profiles 
which demonstrated the progression from the pure diffusion limit to the Kronig 
& Brink infinite PBclet number limit. In  addition, in a linearized analysis of 
circular eddies, Burggraf (1966) showed that the location of the vortex centre 
follows a path strikingly similar to that of the present study as the Reynolds 
number is increased from zero to infinity. 
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FIGURE 5. Time dependence of dimensionless average temperature. 

An example of the enhanced heat transfer caused by the circulation currents 
is illustrated in figure 5 .  This graph indicates the magnitude of the more rapid 
ascent of the average temperature in the cavity as the Pkclet number is increased 
from the zero PBclet number or pure conduction limit. The increased efficiency 
of the induced flow heat transfer of course becomes less pronounced at  the longer 
times. 

The time decay of the average Nusselt number for both actual and idealized 
bolus flow (uniform velocity profile in a fluid between plugs moving down a 
circular pipe) for P, = 100 is shown in figure 6. The superiority of induced flow 
heat transfer is greatest a t  the short contact times since the average Nusselt 
number for both cases approaches zero at  long times. The average Nusselt number 
for both induced flow and conductive heat transport is shown as a function of 
Phclet number for t = 0-1 in figure 7. This graph is similar to the familiar Nusselt 
number-P8clet number plots for fixed length to diameter ratios which are usually 
presented for forced convection heat transfer in laminar tube flow (Eckert & 
Drake 1959). As would be expected, the effectiveness of the induced flow heat 
transfer over conductive heat transfer increases with increasing Pkclet number. 
It should also be noted that, as in the pipe flow case, there exists an upper limit 
for the average Nusselt number given by (46). The use of a PBclet number to 
describe conductive heat transfer is of course somewhat artificial; however, it is 
convenient here to use a P6clet number based on the velocity of the plugs to 
compare actual and idealized bolus flow in a pipe. 
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FIGUEE 6. Time dependence of average Nusselt number for P, = 100. 

90 - 
80 

70 - 

60 - 

- 

4' 50 - 

40.- 

30 - 

p e  

FIGURE 7. Effect of PBclet number on average Nnssolt number for t = 0.1. 

Perhaps the best measure of the degree of enhancement due to the recircula- 
tion patterns is the comparison of the asymptotic instantaneous Nusselt numbers 
for induced flow and conductive heat transfer since the transient effects of tem- 
perature profile development are eliminated. This Nusselt number is necessarily 
independent of PBclet number for conductive heat transfer but increases from the 
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conduction value at  P, = 0 to a value for flow approximately 2.5 times as great for 
P, = 100 a,s is evident from figure 8. Johns & Beckmann calculated an analogous 
curve from their finite-difference analysis of the circulating drop, and it is inter- 
esting to note that the degree of enhancement of heat or mass transfer from the 
drop is numerically quite similar t o  that for the cylindrical cavity. 
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FIGURE 8. Dependence of asymptotio Nusselt number on PBclet number. 

It is clear from the above results that the circulation currents induced in a 
liquid by the flow of tightly fitting solid particles in a tube are sufficiently strong 
to cause substantial heat or mass transfer enhancement if the PBclet number for 
the system is large enough. For the transfer of dissolved gases within blood 
plasma in body capillaries, the PBclet number is of the order of 1 and certainly less 
than 5. Hence, mass transfer enhancement will occur in this particular case only 
if the rate of mass transfer increases rapidly from the pure diffusion limit as the 
PBclet number increases. From the above heat transfer results, it can be concluded 
that this is not the case, and, consequently, the convective toroidal circulation 
contributes negligibly to the transfer of dissolved gases in the pulmonary and 
systemic capillaries of the body. Lew & Fung (1969) have previously proposed 
the same conclusion, based apparently on the reasoning that the streamline 
pattern, as viewed by an observer situated on the tube wall, is not significantly 
different from the pattern for Poiseuille flow. However, if the Peclet number is 
large enough (as would be the case if the diffusion coefficient of the dissolved sub- 
stance in the plasma were very small), then the radial velocities would become 
a dominant mode of transport and would substantially increase the mass transfer 
rate. Indeed, as pointed out by Lighthill (1968), the transfer of complex molecules 
such as proteins within the systemic capillaries would be significantly enhanced 
by the convective motion of bolus flow because such molecules generally possess 
much lower diffusion coefficients than dissolved gases. 
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The heat transfer enhancement observed in the thermal analogue experiments 
of Prothero & Burton (1961) led these authors to conclude that a similar enhance- 
ment would take place in the transfer of dissolved gases in the body capillaries. 
The Reynoldsnumber of the experiments of Prothero & Burton ranged from 70  to 
400 and the P6clet number varied from 250 to  1200. For the low Reynolds number 
limit, the average Nusselt number is a function of the PBclet number, p, and t /P, ,  
as can readily be seen from (36). Por the Prothero I% Burton experiments, the 
average Nusselt number must, in addition, be a function of the Reynolds number. 
From the theoretical development and results of this investigation, it is to  be ex- 
pected that there should be substantial heat transfer enhancement observed in 
these experiments because of the high PBclet numbers utilized. The question that 
must be answered is whether these experiments imply increased mass transfer 
rates for the case of blood flow in capillaries where the Reynolds number is 0.01 
or less and the PBclet number is of the order of one. 

We believe that no conclusions about blood flow can be drawnfrom the Prothero 
& Burton experiments because the ranges of PBclet and Reynolds numbers are 
vastly different for the two cases. Prothero & Burton tried to make such a com- 
parison by postulating that a unique relationship exists between the Nusselt 
number and the Graetz number (which is simply related to t/PJ for bolus flow. 
It is clear from theory that this is not the case, and the effect of the Reynolds 
and Pkclet numbers on the Nusselt number must be ascertained before experi- 
mental bolus flow heat transfer data taken at relatively high PBclet and Reynolds 
numbers can be used to predict bolus flow mass transfer rates at  low PBclet and 
Reynolds numbers. 

The method of analysis presented here leads to an analytical solution from 
which numerical results can be obtained without excessive computation. Hence, 
this approach may well be useful in the analysis of a variety of closed-streamline 
flow problems. In  addition, the results presented here should provide some 
insight into the mechanism of heat and mass transfer for practically important 
bolus flow situations. 

The authors are indebted to Dr R. R. Klimpel for providing a computer pro- 
gram for the conjugate gradient method. 
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